KLRG1 identifies regulatory T cells with mitochondrial alterations that accumulate with aging

Soto-Heredero G, Gabandé-Rodríguez E, Carrasco E, Escrig-Larena JI, Gómez de Las Heras MM, Delgado-Pulido S, Francos-Quijorna I, Blanco EM, Fernández-Almeida Á, Abia D, Rodríguez MJ, Fernández-Díaz CM, Álvarez-Flores MB, Ramírez de Molina A, Jung S, Del Sol A, Zorita V, Sánchez-Cabo F, Torroja C, Mittelbrunn M.

Nat Aging. 2025 Apr 30;

Online ahead of print.

  • PMID: 40307497
  • DOI: 10.1038/s43587-025-00855-9

Recent studies using single-cell RNA sequencing technology have uncovered several subpopulations of CD4+ T cells that accumulate with aging. These age-associated T cells are emerging as relevant players in the onset of inflammaging and tissue senescence. Here, based on information provided by single-cell RNA sequencing data, we present a flow cytometry panel that allows the identification of age-associated T cell subsets in systematic larger analysis in mice. We use this panel to evaluate at the single-cell level mitochondrial and senescence marks in the different age-associated CD4+ T cell subpopulations. Our analysis identifies a subpopulation of regulatory T (Treg) cells that is characterized by the extracellular expression of the co-inhibitory molecule killer cell lectin-like receptor subfamily G member 1 (KLRG1) and accumulates with aging in humans and mice. KLRG1-expressing Treg cells display senescence features such as mitochondrial alterations, increased expression of cell-cycle regulators and genomic DNA damage. Functionally, KLRG1+ Treg cells show a reduced suppressive activity in vivo accompanied by a pro-inflammatory phenotype.

Compartir en X
Compartir en Linkedin