Galectin-1 prevents pathological vascular remodelingin atherosclerosis and abdominal aortic aneurysm

Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, Oller J, Martinez-Lopez D, Nuñez E, Maller SM, Gutierrez-Muñoz C, Mendez-Barbero N, Escola-Gil JC, Michel JB, Mittelbrunn M, Vázquez J, Blanco-Colio LM, Rabinovich GA, Martin-Ventura JL.

Sci Adv. 2022 Mar;

8(11):eabm7322.
doi: 10.1126/sciadv.abm7322.
PMID: 35294231

Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a 􀀀-galactoside–binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1−/−) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1−/− aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1–driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.

Compartir en X
Compartir en Linkedin