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Inflammageing, characterized by persistent chronic inflammation in older adults, has emerged as a critical factor linked to age-related diseases, such as car
diovascular diseases (CVDs), metabolic disorders, and cognitive decline, which collectively contribute to the leading causes of death globally. Elevated levels 
of cytokines, chemokines, and other inflammatory mediators characterize inflammageing and serve as indicators of biological age. Among the causes of 
inflammageing, deterioration of the immune system, mitochondrial dysfunction, dysbiosis, accumulation of DAMPs, together with genetic or epigenetic 
factors, contribute to inflammageing not only in CVD but also in other age-related conditions. This review examines the causes and consequences of in
flammageing, particularly its implications for atherosclerosis and heart failure with preserved ejection fraction and explores potential strategies to mitigate it 
in the onset of CVD.
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1. Introduction
Ageing is defined as the gradual and inevitable process characterized by a pro
gressive decline in functional capacity and heightened susceptibility to diseases, 
culminating in frailty—a clinical syndrome marked by diminished physiological 
reserves and increased vulnerability to adverse health outcomes in older 
adults.1,2 The complexity of ageing, encompassing factors such as genetic, epi
genetic, cellular, and environmental influences, underscores the absence of a 
definitive cure for ageing. While certain interventions, such as caloric restric
tion and pharmacological agents, have shown promise in delaying age-related 
diseases in model organisms, their efficacy and safety in humans are yet to be 
fully understood.3 Inflammageing is the persistent chronic inflammation that 
emerges during ageing and has been coupled with age-related conditions, 
such as cardiovascular diseases (CVDs), metabolic disorders, non-alcoholic 
fatty liver disease, chronic kidney disease, and cognitive decline.4 Altogether, 
these diseases represent the leading causes of death worldwide. 
Understanding the causes and consequences of inflammageing and its relation
ship with age-associated diseases is, therefore, a priority for public health, 
especially now that the global population is ageing. Inflammageing is now con
sidered a hallmark of ageing1 because it meets the three criteria: (i) the gradual 
appearance of changes that occur accompanying the ageing process, (ii) the 
ability to speed up ageing through experimental intensification of the identified 

characteristic, and (iii) the potential to slow down, stop, or even reverse ageing 
through therapeutic interventions targeting the identified hallmark. 
Furthermore, studies have demonstrated the hallmarks of ageing, including in
flammageing, across species, are evolutionary conserved as well as the under
lying pathways and mechanisms of this phenomenon, which will be elaborated 
later on.5,6

The circulating concentration of inflammatory mediators, such as cytokines 
and chemokines, and biomarkers of inflammation, such as C-reactive protein 
(CRP), increase with age. In fact, biological age can be estimated by measuring 
inflammatory mediators in the blood.7 This inflammatory clock of ageing has 
been called iAge and tracked with multimorbidity, immunosenescence, frailty, 
and cardiovascular ageing. One of the contributors to iAge is the CXCL9 che
mokine, which has been involved in vascular ageing and adverse cardiac remod
elling. Among the other cytokines and chemokines that are elevated with 
ageing, tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) stand 
out.8 In fact, high levels of IL-6 are predictive biomarkers of all-cause mortality 
in ageing human populations. A substantial subset of older individuals shows 
inflammasome activation leading to caspase-1-mediated maturation of proin
flammatory cytokines, such as IL-1β and IL-18.9 Lastly, the proinflammatory 
chemokine CCL5 has also been shown to be increased in the bone marrow 
of aged animals, promoting neutrophil accumulation and bone loss.10,11 As 
such, anti-inflammatory agents, lifestyle interventions such as exercise and 
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nutrition, and pharmacological treatments targeting specific inflammatory 
pathways are among the potential approaches to improve the condition of frail 
older adults.2,12

In this review, we will discuss the current knowledge about the causes of 
inflammageing and its consequences for CVDs, with a special focus on po
tential strategies to control inflammageing that could be employed to delay 
the onset of CVDs.13

1.1 Causes behind inflammageing
The causes of inflammageing are complex and involve various factors that con
tribute to persistent chronic inflammation during ageing. The main feature of 
inflammageing is that it occurs in the absence of evident aggression to the or
ganism and at the same time, it prevents the effective and specific response to 
antigen stimulations. Some key factors related to the appearance of inflamma
geing include immune system (IS) deterioration, the secretory-associated sen
escence phenotype (SASP) due to accumulated senescent cells, and 
accumulation of DAMPs driven by a breakdown in mitochondrial endosymbi
osis and microbial commensalism or by persistent infections (Figure 1, Table 1). 
Additionally, some of the molecular mechanisms and signatures of inflamma
geing share strong similarities between mouse and human species in terms of 
immune/inflammatory response, suggesting that it is evolutionarily conserved 
and, more importantly, that the results obtained in mouse trials could be easily 
translated to future therapies in humans.47

2. Changes in the IS
During ageing, there is a deterioration of IS function. This phenomenon, 
known as immunosenescence, results in a dysregulated immune function 
that instead of mounting specific immune responses, engages useless in
flammatory responses.

As the ageing process unfolds, intricate alterations manifest in both the 
adaptive and innate branches of the IS, marked by a reduction in circulating 
lymphocytes (T and B cells) and an elevation in myeloid cells (mostly neutro
phils). This imbalance of immune populations culminates in an increased 

neutrophil-to-lymphocyte ratio (NLR) in the organismal circulation. A 
high NLR predicts mortality and poor prognosis in virtually all age-associated 
diseases as well as during natural ageing. The heightened infiltration of neu
trophils into tissues induces damage17 and triggers tissue senescence18 dur
ing the ageing process and inflammation. The decrease in the frequency of 
both CD4 and CD8 T cells in circulation is accompanied by significant altera
tions in the subsets of T lymphocytes. This comprehends a reduction in the 
naïve pool and an increase in effector/memory T cells with a terminally 
differentiated phenotype.48 Effector memory T cells (TEM), exhibiting ex
hausted, cytotoxic, and senescent features, lose the capacity to migrate to 
lymph nodes and spleen, acquiring instead the ability to migrate to non- 
immune tissues. This shift in T-cell population from naïve towards terminally 
differentiated phenotype compromises immunosurveillance, increases auto
immune diseases, and reduces the repair of biological barriers, altogether 
fostering inflammageing.49 Age-associated alteration studies in immune cells 
led to the identification in mouse organs of a subpopulation of granzyme K 
(GZMK)-expressing CD8+ T (Taa) distinct from TEM. Interestingly, humans 
share the proportion of this circulating GZMK+ CD8+ T-cell subset and the 
transcriptional and epigenetic signature with mouse T cells during ageing, 
suggesting that inflammageing is a conserved process across species and 
therefore represents an attractive therapeutic target.50

As it is observed in numerous other cell types throughout the body, T cells 
exhibit a decline in mitochondrial function as they age. Although this failure may 
be originated primarily in mitochondria, other intracellular compartment de
fects, such as lysosome and autophagosome, can affect T-cell activation, which 
in turn lead to an exacerbated and/or incorrect immune response and the loss 
of homeostasis. Defects in lysosomal acidification through cytokine-inducible 
SH2-containing protein expression in CD4+ T cells promote release of mito
chondrial DNA (mtDNA), which increases inflammatory serum cytokines and 
reduces antibody production.51 In fact, mitochondrial insufficiency triggers the 
functional exhaustion terminal state of T cells through the oxidative 
stress-HIF-1α (hypoxia inducible factor 1)—metabolic reprogramming path
way.52 Therefore, targeting mitochondrial and lysosomal dysfunction in 
T-cell responses may offer a potential approach to mitigate inflammation 
and enhance immune function in the ageing population.

Figure 1 Causes of inflammageing. The presence of PAMPs due to physical rupture of intestinal barrier or persistent chronic infections activate inflamma
tory pathways in the IS. In addition, cells undergoing stress release DAMPs like mtDNA, formylpeptides, and ROS, and some of them become senescent with 
the characteristic SASP-secreting inflammatory signals. Of note, release of DAMPs, PAMPs, and SASPs contribute to inflammageing and foster the deterior
ation of the IS affecting to quality and quantity of immune responses and worsening inflammageing. These factors, together with intrinsic factors that contribute 
to the deterioration of the IS, like CHIP, myeloid skewing, high NLR, thymus involution, and antigen exposure. PAMPs, pathogen-associated molecular patterns; 
DAMPs, damage-associated molecular patterns; mtDNA, mitochondrial DNA; ROS, reactive oxygen species; CHIP, clonal haematopoiesis of indeterminate 
potential; NLR, neutrophil to lymphocyte ratio; SASP, secretory-associated senescence phenotype.
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We and others have previously contributed to demonstrate that the deteri
oration on the IS function with ageing is sufficient to induce organismal ageing 
and age-related multimorbidity.19,20 Data from our lab show that T-cell-specific 
mitochondrial defect by depleting the mitochondrial transcription factor A 
(TFAM) not only mimics age-associated T-cell mitochondrial dysfunction and 
recapitulate the main hallmarks of T-cell ageing, but is also sufficient to drive car
diovascular, cognitive, metabolic, and physical ageing coupled to premature in
flammageing. The TNF inhibitor etanercept delays this phenotype. These 
results support that ageing of T cells may drive inflammageing and organismal 
ageing. In fact, haploinsufficiency of the DNA repair protein ERCC1 in haem
atopoietic cells is also sufficient to induce senescence of non-lymphoid organs, 
as well as numerous signs of organ damage coupled to reduced lifespan.53

Recently, a new subset of CD4 T lymphocytes with a cytotoxic pheno
type characterized by the expression of the EOMES transcription factor 
producing granzymes and CCL5 has been reported that appears during age
ing and is especially abundant in supercentenarians.14 The results from our 
lab support that this subset infiltrates the bone marrow during ageing, fa
vouring myeloid skewing and the overproduction of neutrophils.10

Most of the changes in immune population frequencies and phenotypes 
predominantly result from: 

(1) Alterations in bone marrow, myeloid skewing, and clonal haematopoiesis of 
indeterminate potential (CHIP; Figure 2). Distinct factors contribute to 
increased levels of neutrophils during ageing, but the most recognized 
cause is a skewing of haematopoiesis towards the differentiation of 
myeloid progenitors at the expense of lymphoid progenitors.52 CHIP 
is a common age-related condition characterized by the clonal expan
sion of haematopoietic stem cells bearing mutations in certain genes, 
especially DNMT3A, TET2, and ASXL1.39,40 These mutations affect 
myeloid cells, such as macrophages and neutrophils, leading to in
creased expression of inflammatory genes, which might account for 
the increased risk of cardiovascular complications in individuals with 
CHIP. In fact, TET2-deficient macrophages showed increased IL-6 pro
duction and NLRP3 inflammasome activity reflected in IL-1β secre
tion.22 Moreover, CHIP driven by TET2 also favours CVD, which is 
attenuated by treatment with canakinumab, an anti-IL-1β antibody.23

Similarly, monocytes of heart failure (HF) patients harbouring 
DNMT3A driver mutations exhibited markedly increased expression 
of inflammatory genes, including NLRP3 inflammasome.15,16

(2) Thymus involution. The thymus is the primary immune organ respon
sible for generating self-tolerant and immunocompetent T cells. 
However, the thymus gradually involutes during early life resulting 
in declined naïve T-cell production. Thymic involution has many 
negative impacts on immune function, including reduced pathogen 
resistance, high autoimmunity incidence, and attenuated tumour im
munosurveillance contributing to inflammageing.21,54

(3) History of antigen recognition. As we encounter antigens and pathogens 
over time, the cumulative effect on our IS can accelerate immunose
nescence, potentially leading to increased susceptibility to infections 
and decreased ability to mount robust immune responses.55

Altogether, these alterations in immune cellular subsets and function 
contribute to inflammageing.

3. Accumulation of senescent cells in 
tissues
As cells undergo the process of ageing, they may transition into a state of sen
escence, wherein they halt their division yet maintain metabolic activity. 
Senescent cells exhibit arrested cellular cycle, resistance to apoptosis, and 
are characterized by an SASP.24 The accumulation of senescent cells produ
cing elevated amounts of proinflammatory cytokines and SASP cell extrinsic 
factors favours inflammageing driving the decline in immunological protection 
as we age, thereby targeting these cells might be a strategy to delay inflamma
geing. A very recent study has found conserved epigenetic clocks in memory 
T cells both in murine and in human species, as shown by DNA methylation 
profiles of replicative senescence-associated genes in this cell population.25

Although the IS is prepared to recognize and eliminate senescent cells in a 
physiological way, the age-associated deterioration of the IS or the expression 
of immunosuppressive ligands, such as PD-L1 and PD-L2 by senescence cells 
could favour the accumulation of senescence cells in the tissues.26

Senolytics are a class of drugs and natural products that deplete senescence 
cells through apoptosis. In a preclinical trial with middle-aged non-human pri
mates, 6 months of intermittent treatment with a senolytic combination of da
satinib and quercetin delayed inflammageing probably via immune benefits and 
improved intestinal barrier function.56 Same senolytics also prevent mtDNA 
induced inflammageing in older organs.57 In addition, other compounds named 
senomorphics inhibit senescence-associated secretory phenotype by targeting 
pathways related to SASP expression, such as the p38MAPK, PI3k/Akt, mTOR, 
and JAK/STAT pathways and transcription factors, such as nuclear factor kap
pa B (NF-κB), C/EBP-β, and STAT3, therefore reducing systemic inflammation. 
Metformin is an example of senomorphic with anti-inflammageing proper
ties58 and therapeutic potential as a treatment for CVD.59

4. Mitochondrial dysfunction and 
break in mitochondrial 
endosymbiosis
With ageing, the function of mitochondria declines due to multiple inter
laced mechanisms including the accumulation of mtDNA mutations and 
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Table 1 Sources of inflammageing, description, and molecular targets involved

Source Description Molecular targets Refs.

NLRP3 inflammasome 

activation

Involved in inflammageing and HFpEF pathogenesis NLRP3, Caspase-1 cleavage, NF-κB, chemokines (CCL5) 14–16

Inmunosenescence Malfunctioning of IS, unadaptive, or insufficient response CDXX, KLRG1, TEM, CHIP, myeloid skewing, thymus involution 17–21

Proinflammatory Cytokines Elevated levels linked to inflammageing and mortality in 

ageing populations

IL-1β, IL-6, TNF-α 22,23

DAMPs and SASP Accumulation contributes to chronic inflammation and 

inflammageing

mtDNAs, succinate, fumarate, N-formyl peptides, AGEs, ROS, 

Cardiolipin, and ATP

24–28

Mitochondria Dysfunction plays a role in inflammation and cellular 
ageing

Mutations in mtDNA, ROS, TCA, OXPHOX, PGC-1α, and TFAM 29–38

Genetic/epigenetic factors Influence inflammageing through gene expression and 

epigenetic modifications

MiRNAs (CHIP: DNMT3A, TET2, ASXL1), SNPs, DNA 

methylation, and histone modifications

25,39–43

Intestinal microbiota 

PAMPs

Dysbiosis impacts systemic inflammation and ageing 

processes

Calprotectin, LPS, TCA metabolites 44–46
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deletions, reduced turnover of the organelle, and changes in mitochondrial 
dynamics. The deterioration in mitochondria function not only compro
mises the cellular bioenergetics state, but also can contribute to inflamma
geing. Mitochondria constitute a latent trigger of inflammation due to their 
endosymbiotic origin.29 Mitochondria retain many bacterial remnants that 
can act as damage-associated molecular patterns (DAMPs). Under stress 
conditions, mitochondrion-derived molecules, such as mtDNAs, succinate, 
fumarate, N-formyl peptides, reactive oxygen species (ROS), cardiolipin, 
and ATP, are released from mitochondria and activate several inflammatory 
pathways.30–32 MtDNA present in many copies within mitochondria is not 
methylated at CpG and is more susceptible to oxidative damage due to its 
location and its limited repair capability. The mtDNA release to the cytosol 
can trigger a cascade of inflammatory innate responses, such as cGAS stimu
lator of interferon (IFN) gene expression, Toll-like receptor 9 (TLR9) path
way activation, and cytosolic inflammasome formation.33 Circulating 
mtDNA appears to increase gradually with age after the fifth decade of 
life, and the abundance of unhoused mtDNA is associated with accelerated 
ageing.34 The 13 polypeptides translated within mitochondria are all in
itiated with an N-formyl methionine. These mitochondrial proteins, includ
ing N-formyl peptides, primarily induce inflammation through binding to 
formyl peptide receptor-1.35 On the other hand, after the formation of 
double-strand breaks in the mtDNA, herniation mediated by BAX and 
BAK releases mitochondrial RNA (mtRNA) into the cytoplasm stimulating 
NF-κB through RIG-I and mitochondrial antiviral-signalling protein. 
Consequently, this leads to activation of Type I IFN response.36

In addition to mtDNA, mtRNA, formyl peptides, and ROS, mitochondrial 
dysfunction releases tricarboxylic acid cycle (TCA) intermediate metabolites 
into the cytosol with inflammatory effects37 such as fumarate or succinate. 
Fumarate inhibits lysine-specific demethylase 5 A (KDM5) histone demethy
lase activity and inhibition of KDM5 increases the levels of H3K4me3, a marker 

of active gene transcription at the promoters of TNF-α and IL-6 cytokine.38

Furthermore, elevated levels of succinate, resulting from mitochondrial dys
function, may contribute to chronic inflammation by activating the HIF-1α 
pathway through stabilization of the hypoxic transcription factor HIF-1α. 
Succinate inhibits prolyl hydroxylases, enzymes responsible for the degrad
ation of HIF-1α thus stabilizing HIF-1α that translocates into the nucleus and 
initiates the transcription of inflammatory cytokines, such as IL-1β.60

5. Dysbiosis, intestinal barrier 
dysfunction, and leaky gut
The integrity of the intestinal barrier is essential for the health of the organ
ism throughout life. Intestinal barrier dysfunction is an evolutionarily con
served feature of aged organisms, as it has been reported in worms, flies, 
fish, rodents, and primates.61 Pioneers studies come from the drosophila 
model using a non-absorbable blue food approach to monitor intestinal 
barrier function in living flies.62–64 In these assays, the presence of the 
dye outside of the digestive tract throughout the body is an indicator of 
intestinal barrier dysfunction which is called Smurf phenotype. By separat
ing Smurf flies by chronological age, the authors showed that intestinal bar
rier dysfunction is a better predictor of mortality than chronological age. 
Moreover, this study also reported that intestinal barrier dysfunction 
was associated with additional markers of health decline, including markers 
of inflammageing.63 The disrupted intestinal barrier is the cause of changes 
in microbiota composition, known as a gut dysbiosis and can also be af
fected by the deterioration of the IS.44 Changes in permeability allow 
some bacteria and their molecules, PAMPs, to enter the circulatory system 
enhancing inflammageing. Faecal calprotectin is a general marker of gut 

Figure 2 Molecular mechanisms of inflammageing. In the heart and the vasculature, inflammageing promotes oxidative stress and increases inflammatory 
mediators such as CRP and adhesion molecules that result in ECM and lipidome remodelling. Additional factors, such as epigenetic changes, including oscilla
tions in levels of several miRNAs, has been shown to contribute to the sustained inflammation that lead to endothelial dysfunction, atherosclerosis, vascular 
injury, and heart failure. CVD, cardiovascular disease; HFpEF, heart failure preserved ejection fraction; CRP, C-reactive protein; ECM, extracellular matrix; 
PUFA, polyunsaturated fatty acids; miRNA, microRNA; IL-1, interleukin-1; IL-6, interleukin-6; TNF, tumour necrosis factor.
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inflammation that consist in a heterodimer of S100 calcium-binding 
proteins that is primarily expressed in immune cells and can be released 
from the cytosol of activated neutrophils. Recent studies have shown 
that levels of faecal calprotectin are associated with advanced age and 
Alzheimer’s disease45 and with acute HF.65 The lipopolysaccharide 
(LPS)-binding protein, which is known as a marker of clinical endotoxae
mia, and the soluble form of CD14 (sCD14), co-receptor for LPS, are 
both also used as markers of gut permeability and bacterial translocation.46

6. Accumulation of DAMPs
As state before, the age-related rupture of both mitochondrial endosym
biosis and intestinal barrier constitutes an immense source of DAMPs and 
PAMPs. Additionally, even though the human body is provided of complex 
and well-regulated mechanisms to repair or eliminate degraded cellular 
material, during age-associated diseases, there is an accumulation over 
time of diverse biological debris.27 These metabolites also include advanced 
glycation endproducts (AGEs), oxLDL, high mobility group protein B1, 
ATP, and many others. Our IS recognize them and is activated constantly 
due to inability to be eliminated by other mechanisms. Ultimately, the sus
tained activation of innate and adaptive immunity branches by DAMPs trig
gers the hyper-responsiveness of myeloid and lymphoid cells contributing 
to chronic inflammation.28

6.1 Genetic predisposition, chronic 
infections, endocrine changes, and 
environmental factors
Other causes that contribute to heterogeneity of inflammageing are related 
to each individual and include genetic predisposition, chronic infections, endo
crine changes, and environmental factors. Over the past decades, studies with 
human populations demonstrated the link of genetic variants with the 
proinflammatory profile found in the blood biomarkers.66 The most relevant 
genetic associations are those related to SNP, such as IL1RN minor alleles, 
multiple SNP in CRP gene or in the promoter region of IL-6.41–43

However, a large divergence has been observed during ageing in the inflam
matory markers in twins for many of these genetic variants, suggesting that 
the influence of environmental factors is also remarkable. In many other cases, 
there are strong evidence that inflammageing is powered by the relative abun
dance of micro RNAs (miRNAs) in circulating cells or plasma during ageing as 
we will explain latter in this review.67 The response of the IS to some persist
ent infections may become dysregulated with age, such as cytomegalovirus 
(CMV) and HIV or bacterial infections. The reactivation episodes against these 
viruses can contribute to chronic inflammation over time, but the mechanism 
behind this is still unclear. One hypothesis in the case of human-persistent 
CMV infection is that it accelerates inmunosenescence of memory 
T-cell compartment in older individuals. In fact, a new population of 
CD57+CD28−CD8+ T cells, which are enriched in individuals with HIV and 
CMV chronic infections, are associated with immunosenescence, suggesting 
a link to chronic viral infections and immune dysregulation.68 Ageing is asso
ciated also with physiological changes in the endocrine system. Hormone le
vels can impact the IS and contribute to maintain an inflammatory state due to 
excessive or deregulated trophic signals resulting in activation of GH/IGF1/ 
Pi3K/AKT/mTORC1 signalling pathways.69 For example, adiponectin and lep
tin are affected in adipocytes in several fat depots during obesity and ageing, 
and together with the circulating proinflammatory signals of chemokines/ 
cytokines foster inflammageing. A recent study using a mouse model has 
linked the altered nutrient sensing through mTOR signalling with senescence 
and myeloid inflammation and neutrophil infiltration in tissues reducing 
lifespan.70 Sex hormones, specifically androgens and oestrogens, can modu
late inflammatory responses. Whereas oestrogens can exhibit either 
anti-inflammatory (at high concentrations) or proinflammatory (at low 
concentrations) effect, androgens shown anti-inflammatory effects both in 
vivo and in vitro.71 Accordingly, sex/gender differences in inflammageing are 
shown during immune ageing when sex hormones decline. While older wo
men have higher adaptive immune activity, older men show higher activity for 

monocytes and inflammation, indicating greater inflammageing in men.72–74

Moreover, the X chromosome contains several genes encoding immune 
and inflammatory molecules, including FOXP3, essential for regulatory 
T-cell development, or the TLR7, essential receptor for PAMPs and 
DAMPs that has been associated with CVD, including atherosclerotic plaque 
formation.75 Finally, some environmental factors, such as pollution and che
motoxicity, can be intertwined with all the above and worsening 
inflammation.

Understanding these contributing factors is essential for developing strat
egies to mitigate inflammageing and its associated health risks. Ongoing re
search aims to unravel the complex interplay of these factors and identify 
potential interventions to promote healthy ageing.

6.2 Inflammageing and atherosclerosis: 
causes and consequences of inflammageing 
for atherosclerosis and treatments based on 
inflammageing
As individuals age, they become increasingly susceptible to cardiometabolic 
pathologies due to a combination of biological, physiological, and lifestyle 
factors.76,77 Among the most studied ones, inflammageing has emerged 
as a key pathophysiological process driving this relationship, with significant 
relevance in the context of atherosclerosis. Indeed, ageing is a major risk 
factor for atherosclerosis, presumably due to inflammageing.78

6.3 Definition of atherosclerosis: hints on 
inflammageing
Atherosclerosis is an intricate vascular condition marked by the gradual 
build-up of lipids, inflammatory cells, and fibrous material within the suben
dothelial space of large arteries.79 Despite advancements in prevention and 
treatment, it continues to be the foremost cause of death in developed na
tions.80 Atherosclerotic lesions typically develop in branching regions of 
disturbed blood flow, which damage vascular endothelial cells and triggers 
inflammatory pathways, heightened permeability, oxidative stress, NF-κB 
activity, and followed by the expression of receptors and cytokines that at
tract leucocytes. Compromised endothelial integrity also enables the accu
mulation and oxidation of cholesterol-laden LDL particles within the 
arterial wall which increasingly contributes to the later events such as 
monocyte differentiation to macrophages and transition to foam cells.81

The NLRP3 inflammasome activation in macrophages, cells responsible 
of clearance of cholesterol excess in the plaque through efflux, prompts 
the release of IL-1β, IL-18 together with other proinflammatory cytokines, 
serving as chemoattractant for T and B cells, which play critical roles in the 
atherogenesis. Evolved atheroma encompasses a necrotic core enriched in 
apoptosis and senescent cells expressing p16INK4A and the tumour sup
pressor ARF, characterized by SASP that fosters inflammation and pro
vokes the destabilization of the atherosclerotic plaque.12 This intricate 
progression contributes significantly to the vulnerability and rupture of 
the plaque, the formation of thrombus, and the onset of acute vascular oc
clusion that might later result in a myocardial infarction or stroke.79

6.4 Inflammageing contributing to 
atherosclerosis
Inflammageing not only contributes to atherosclerosis itself but also inter
acts with conventional cardiovascular risk factors, such as obesity, hyper
tension, and Type 2 diabetes mellitus, amplifying their adverse 
cardiovascular effects. The origins of inflammageing and its interconnection 
to other health outcomes are not fully understood. An ongoing debate 
centres around whether elevated levels of proinflammatory compounds 
found in circulation and tissues are causally contributing to associated 
pathological conditions or if inflammation merely serves as a reactive mark
er to the underlying pathology. Both possibilities are believed to be feasible 
as these mechanisms are highly interconnected.12 This is particularly true 
for atherosclerosis, where early damage occurring during inflammation 
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of vascular endothelial cells triggers the development of the atherosclerotic 
lesions, while atherosclerosis itself generates antigens and perpetuates the 
inflammatory response. Adding to the complexity, the crosstalk between 
chronic inflammation and other hallmarks of ageing such as senescence 
or telomere shortening during atherosclerosis, results in a vicious cycle 
that exacerbates the decline in cellular functions and promotes ageing.78

Furthermore, important aspects associated with the deterioration of IS 
linked to ageing have been directly related to atherosclerosis. As such, mu
tations leading to CHIP contribute to the increased inflammation seen in 
ageing and partially explain the age-related risk of CVD.39 Moreover, the 
high NLR, a marker of systemic inflammation increased during ageing, re
presents an independent prognostic factor for coronary artery disease 
and is a strong predictor of atherosclerotic carotid plaques in older 
adults.82 Additionally, recent studies in humans have shown inflammatory 
transcriptional reprogramming and myeloid skewing in patients with ath
erosclerosis.83 Also, it has been reported that clonally expanded memory 
CD8+ T cells accumulate in atherosclerotic plaques and are proatherogenic 
in aged mice.84 Vascular extrinsic mechanisms are reviewed in detail 
elsewhere.85

Noteworthy, chronic inflammation can accelerate telomere dysfunction 
and cell senescence in HIV-infected population. Emerging data indicate 
that, even under strict control of the traditional cardiovascular risk factors, 
HIV infection increases rates of atherosclerosis-related disease, mostly due 
to chronic arterial inflammation, which, in turn, promotes atherosclerosis. 
In fact, young HIV-infected adults show premature biological ageing with 
accentuated immune activation. Chronic inflammation with excessive 
T-cell activation could be associated with telomere shortening, premature 
ageing, and subclinical atherosclerosis in young HIV-infected adults.86 All in 
all, this evidence strongly suggests that atherosclerosis shares several com
mon pathologic mechanisms with ageing and inflammageing.87

With the aim of simplifying the complex phenomena currently describ
ing the mechanisms and consequences of atherosclerosis, inflammageing 
can be seen from a cellular or systemic level perspective (Figure 2). In 
this sense, several circulating proinflammatory markers of inflammageing, 
such as IL-1β, IL-6, CRP, and TNF-α, are considered as predicted risk fac
tors of CVD in an ageing setting.88–90 High TNF-α levels in centenarians are 
associated with a low ankle-brachial arterial pressure index, indicating per
ipheral atherosclerosis.91,92 In agreement, genome-wide association stud
ies (GWASs) conducted with centenarian populations from Italy and 
China have pinpointed polymorphisms within the IL-6 gene locus as key de
terminants of longevity, explaining up to 1% of lifespan variance.93–95 In the 
Italian centenarian population (InCHIANTI study), circulating levels of IL-6 

and soluble TNFR1 emerged as robust predictors of inflammatory risk, 
with an inflammation index score proving to be a strong predictor of 
10-year all-cause mortality in older individuals.96 Notably, recent GWASs 
have implicated the IL-6 locus in calcific aortic valve stenosis, suggesting a link 
between inflammageing and this age-related CV condition.97 Moreover, works 
from Ridker and others have shown that IL-6, together with IL-1, well-known 
contributors to the pathophysiology of atherosclerosis, represent potential 
therapeutic targets for the disease.88 In line with this, impaired IL-6 signalling 
due to polymorphisms or the inhibition of the IL-6 receptor (IL-6R) by tocili
zumab (TCZ), a blocker monoclonal antibody to treat rheumatoid arthritis, 
have shown significant decreased odds of coronary heart disease events in 
large cohorts of patients98,99 potentially due to reduced proinflammatory 
HDL-associated serum amyloid A42 (Table 2). The therapeutic outcome of 
this strategy has been further explored. A small study TOCRIVAR, for in
stance, demonstrated that abnormalities in the lipid profile in TCZ-treated pa
tients correlated to levels of proprotein convertase subtilisin/kexin-9 (PCSK9), 
but reduced Lp(a) serum concentration and increased cholesterol efflux cap
acity, reinforcing a favourable effect on lipid metabolism, and consequently on 
cardiovascular risk.113 Aligned with the inflammatory characteristics of ageing, 
atherosclerosis and its acute manifestations, individuals with chronic extracar
diac inflammatory conditions like rheumatoid arthritis or psoriatic arthritis ex
hibit an increased CVD-related mortality compared with the general 
population.113 Aside from IL-6, the primary circulating form of IL-1, IL-1β, trig
gers atherogenic events, including smooth muscle cell (SMC) proliferation, re
cruitment of inflammatory cells followed by leucocyte adhesion, production of 
IL-6, and exerts a procoagulant activity.114 Indeed, the large canakinumab anti- 
inflammatory thrombosis outcomes study (CANTOS trial) published in 2017 
in a large cohort consisting of >10 000 patients with previous myocardial in
farction and high CRP has shown demonstrable effectiveness of anti- 
inflammatory therapy using a monoclonal antibody targeting IL-1β and redu
cing recurrent fatal and non-fatal cardiovascular events102 (Table 2). Some 
other anti-inflammatory therapeutic approaches against CVD explored have 
failed, like the international study with methotrexate (CIRT trial)103 or the 
VISTA-16 and the STABILITY trials that investigated the inhibition of lipid in
flammatory mediator sPLA2 or Lp-PLA2, respectively.111 Nevertheless, clinic
al approaches testing other compounds have shown promising effectiveness. 
This applies for colchicine, a drug that down-regulates several inflammatory 
pathways and reduces neutrophil function and migration through the vascular 
endothelium, both proatherogenic events linked to unstable coronary dis
ease.104 In the LoDoCo and LoDoCo Trial 2, colchicine treatment resulted 
in lowering the risk of CDV events in patients who have experienced a recent 
myocardial infarction and in individuals diagnosed with chronic coronary 
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Table 2 Main clinical trials of anti-inflammatory therapy in CVD

Clinical trial Drug/ 
compound

Molecular target Outcome/observations

Anakinra trials100,101 Anakinra IL-1R Reduced systemic inflammatory status and decreased CRP levels in HFpEF patients

CANTOS trial102 Canakinumab IL-1β Demonstrated effectiveness in reducing recurrent fatal and non-fatal cardiovascular events

CIRT trial103 Methotrexate Purinergic signalling International study exploring anti-inflammatory approaches against CVD, outcome not 
successful

COLCOT trial104–106 Colchicine Inflammatory pathways Included in ESC recommendations for prevention in high-risk CVD patients

DELIVER study107 Dapagliflozin SGLT2 Reduced combined risk of worsening HF or CV death among HFpEF patients
EMPEROR 

preserved108

Empagliflozin SGLT2 Reduced cardiovascular death or hospitalization for HF in HFpEF patients

LoDoCo trial104 Colchicine Microtubule assembly Reduced risk of CVD events in patients with post-myocardial infarction
LoDoCo trial 2103,109 Colchicine Microtubule assembly Lowered risk of CVD events in individuals with chronic coronary disease

MEASURE study98,99 Tocilizumab IL-6R Targeting specific inflammatory pathways in HFpEF

PARAGON trial110 LCZ696 Angiotensin-nepresylin No significant improvement in inflammation level in HFpEF patients
STABILITY trial104,111 Darapladib Lp-PLA2 Investigated inhibition of Lp-PLA2, outcome not successful

STEP-HFpEF trial100,112 Semaglutide GLP-1R Reduced inflammation in obese HFpEF patients

VISTA-16 trial111 sPLA2 sPLA2 Inhibition of lipid inflammatory mediator, outcome not successful
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disease, respectively.103,109 More recently, conclusions from COLCOT trial 
have led the European Society of Cardiology to include colchicine as a recom
mendation for prevention in high-risk patients of CVD105,106 (Table 2).

From a more experimental standpoint, a significant number of studies 
have highlighted the impact of inflammageing on key molecular and cellular 
mechanisms occurring or contributing to atherogenesis. That is the case 
for hypertension in older individuals, where inflammatory mediators con
tribute to the dysfunction of vascular endothelial cells (ECs) and vascular 
smooth muscle cells (VSMCs). In experimental hypertension, the presence 
of inflammatory cells such as dendritic cells, NK cells, and macrophages is 
typical.115 Monocytes expressing receptors for Angiotensin II and minera
locorticoids drive hypertension by promoting inflammatory polarization 
and increasing ROS production.116 The context of inflammageing amplifies 
these effects, with macrophages in the vessel wall generating higher ROS 
levels, which leads to reduced nitric oxide (NO) availability, increased ad
hesion molecule expression, VSMC hypertrophy, and activation of MMPs, 
contributing to vascular remodelling and dysfunction.117 Mice with func
tionally deficient macrophages exhibit reduced vascular oxidative stress, 
improved endothelial function, and resistance to hypertension.118

Mediators of inflammageing, including TNF, IL-1β, Caspase 1, and compo
nents of NLRP3 inflammasome, are potential targets for age-related hyper
tension that hastens the formation of atherosclerotic plaque.119 In 
addition, cholesterol crystals activate the NLRP3 inflammasome in macro
phages, leading to the release of proinflammatory cytokines, further fuelling 
the inflammatory response associated with atherosclerosis. In this line, lipid 
intermediates, such as cholesterol, play a pivotal role in connecting inflam
mageing and atherosclerosis and related events orchestrated by immune 
cells like macrophages and lymphocytes within the atherosclerotic plaque. 
As indicated before, the accumulation of LDL-cholesterol within arterial 
walls represents a key event during atherogenesis, which triggers inflamma
tion, engaging T cells, and promoting the formation of atherosclerotic pla
ques. A recent study provides additional clues regarding the existing 
crosstalk between lipid pathways, inflammageing, and atherosclerosis. 
The Westerterp group’s demonstrated that T-cell-specific deficiency in 
cholesterol efflux transporters Abca1 and Abcg1 led to increased T-cell ac
tivation, apoptosis, and premature ageing, ultimately contributing to in
creased atherogenesis in middle-aged mice.120 These findings shed light 
on the role of the adaptive IS and lipid pathways in age-related inflamma
tion and atherosclerosis, potentially offering new insights for therapeutic 
interventions in ageing individuals. In agreement with this, the lipidome 
changes associated with ageing might be relevant as they can reflect the 
progressive deterioration of metabolic health and contribute to 
age-related pathologies. Hornburg et al.,121 reported changes in >800 lipid 
species in human plasma, many of which are associated with 
health-to-disease transitions in diabetes, ageing and inflammation, as well 
as cytokine–lipidome networks. The researchers observed a shift in the 
physicochemical properties of lipids, including increased levels of saturated 
fatty acids and monounsaturated fatty acids and reduced levels of polyun
saturated fatty acids (PUFAs). This pattern has been associated with dysli
pidaemia and inflammation, indicating progressive deterioration of 
cardiometabolic health during ageing.122 Additionally, depleted levels of 
beneficial omega-3 fatty acids, such as docosahexaenoic acid and eicosa
pentaenoic acid, were observed with ageing. Some other specialized med
iators derived from PUFAs, proresolvins, have gained increasing interest as 
a potential therapeutic target for inflammageing and its associated patholo
gies. Although bibliography has not provided specific findings in the context 
of age-related CVD, significant reduced levels of resolvin D1 have been 
found in vulnerable regions of atherosclerotic plaques, particularly where 
macrophages express 5-lipooxygenase. This enzyme converts arachidonic 
acid to proinflammatory leukotrienes, suggesting a potential role in 
promoting plaque rupture.123 Nevertheless, the discovery of factors that 
integrate synergistic effects contributing to atherosclerosis, such as inflam
matory and lipid metabolic factors or biomechanical effects, will help to 
better understand the linking between atherosclerosis and ageing. 
Caveolin-1 (Cav-1) for instance, a structural protein cholesterol-enriched 
membrane rafts known as caveolae,124 is known to be necessary for the 
development of atherogenesis by enhancing LDL transcytosis, EC vascular 

inflammation, and modulation of ECM remodelling.79 Interestingly, Cav-1 
has been shown to play a critical role in vascular ageing in vivo, regulating 
dyslipidaemia and disturbed flow and promoting endothelial stiffening 
induced by oxidized-LDL in vitro.125 Moreover, Cav-1 deficiency also en
hances autophagy in the aortic endothelium, a recognized age-associated 
mechanism thereby mitigating vascular ageing and atherosclerosis.81

Altogether, previous studies suggest a therapeutic avenue for managing 
several aspects of vascular ageing and atherosclerosis through modulation 
of Cav-1 expression.

6.5 miRNAs in atherosclerosis and 
inflammageing
Epigenetic alterations, encompassing DNA methylation, modifications to his
tones, and post-transcriptional regulators, such as miRNAs or RNA-binding 
proteins, are associated with the control of inflammatory pathways and pro
cesses related to ageing (Figure 2). A growing number of reports have shown 
the capacity of miRNAs to target effectors of longevity or stem cell behav
ior1,126 or other aspects closely associated with age-related CVD, such as lipid 
metabolism and inflammation.127,128 Although our understanding of their in
volvement in atherosclerosis and cardiovascular metabolism is more compre
hensive,129 further research is required to precisely elucidate how these 
post-transcriptional regulators synergistically contribute to both inflammage
ing and atherosclerosis. MiRNAs have emerged as direct modulators of 
inflammatory pathways, including NF-κB, mTOR, Sirt, TGF-β, and differential 
patterns of miRNA signatures are linked to age-related diseases, including 
atherosclerosis.130,131 Conducted research showed up-regulated miRNAs 
such miR-21-5p and miR-126-3p during ageing while others like miR-25-3p, 
miR-92a-3p, miR-93-5p, miR-101-3p, miR-106b-5p, miR-142-5p, miR- 
151a-3p, and miR-181a-5p are reduced levels in age individuals. Some other 
up-regulated miRNAs present in circulating plasma and extracellular vesicles, 
such as miR-29a-3p, miR-29c-3p 3, miR-155-5p, miR-184-3p, or miR-300-3p, 
have been lately described as systemic regulators of ageing. Despite the avail
able information, the promiscuous nature of the regulation of gene expres
sion by miRNAs makes it necessary to explore direct actions on specific 
pathways or targets involved in inflammation in the context of age-induced 
atherosclerosis. For instance, miR-21-5p levels are higher in patients with 
CVD than in age-matched controls and inversely correlate to circulating in
flammatory markers of CVD, such as CRP or fibrinogen.132 Another example 
is miR-34, which has emerged a key gero-miRNA, increasing with age and 
promoting senescence and inflammation in vascular cells. Indeed, various 
risk factors of CVD modulate miR-34a expression, exacerbating vascular dys
function or promoting VSMC proliferation during disease progression.107 To 
add further intricacy to the field, patterns of molecular changes in miRNAs 
during ageing seems to be tissue- and cell-type specific,131,133 that, summed 
to the complex multicellularity of the atherosclerotic process, makes these 
studies very challenging. Nevertheless, approaches as experimental hetero
chronic parabiosis have been able to partially reverse the age-related increase 
in miR-29c-3p, a miRNA that targets ECM and secretion pathways which 
could potentially impact inflammageing and CVD.131 Related to the inflamma
tory nature of miRNAs during ageing, studies analysing whole-blood human 
samples suggest that the miRNAs showing an increase with age primarily 
originated from immune cells, including B cells, monocytes, NK cells, and 
cytotoxic T cells. Moreover, analysis of large cohort of patients uncovered 
pan-disease and disease-specific alterations in ageing miRNA profiles. 
Specifically, miRNAs, such as miR-191-5p and miR-16-5p, were highlighted 
as dysregulated in the context of cardiovascular disorders, suggesting their 
potential involvement in the underlying molecular mechanisms.131

These findings provide insights into the complex dynamics of miRNA 
changes during ageing and their potential implications for understanding 
age-related cardiovascular disorders and developing specific disease biomar
kers. In summary, the identification of disease biomarker sets in ageing profiles 
has the potential to revolutionize the diagnosis, treatment, and management 
of age-related diseases, ultimately improving the quality of life for older 
patients.

The acknowledgement of the interconnected relationship between ageing, 
inflammation, and CVD has garnered significant new mechanistic insights, as 
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outlined in this section. Several innovative therapeutic possibilities have arisen 
from these advancements in basic science. Utilizing biomarkers to evaluate 
the heightened activity of specific proinflammatory pathways could aid in tai
loring therapies and improving the personalization of medical interventions, 
particularly in the expanding aged population.

6.6 Heart failure with preserved ejection 
fraction and inflammageing
The molecular mechanisms of inflammageing in cardiac and vascular ageing 
involve several key pathways and processes including the NLRP3 inflam
masome activation and the interaction with TFG-β1 axis, telomere 
shortening, oxidative stress, and endothelial dysfunction among others 
(Figure 2).134 These altered inflammation processes impact in CVDs other 
than atherosclerosis such as HF disease, hypertension, and degenerative 
aortic aneurysm. HF with preserved ejection fraction (HFpEF) is a condi
tion that affects over 50% of HF patients where the heart is unable to 
pump blood effectively, leading to a range of symptoms, such as fatigue, 
shortness of breath, and fluid retention. Despite in HFpEF, the ejection 
fraction is preserved, meaning that the heart’s pumping function is still rela
tively normal, patients with HFpEF display abnormal diastolic fraction.135

This results in elevated pressures within the heart, leading to symptoms 
of HF. There are several risk factors for HFpEF but compared with 
HF-reduced ejection fraction (HFrEF), in which the ejection fraction is re
duced, HFpEF is more often associated with conditions such as hyperten
sion, obesity, diabetes, insulin resistance, and ageing.135,136 In fact, available 
evidence suggests that the severity of HFpEF increases more rapidly with 
age than HFrEF but also the prevalence of HFpEF at any given age is higher 
in women compared with men, suggesting a close interplay between age
ing, gender, and age-related HFpEF progression compared with HFrEF.137

Moreover, metabolic dysfunction is a feature of ageing, and a large propor
tion of HFpEF individuals is overweight or obese and display metabolic car
diomyopathy. Clinical and preclinical studies have linked adiposity with 
deteriorating cardio-pulmonary parameters in HFpEF.138

In this section of the review, we explore the molecular and pathological 
settings by which inflammageing may be both a risk factor and a pathogenic 
mechanism of HFpEF and identifies potential targets, specifically those that 
are based on anti-inflammageing strategies. Inflammageing plays a causative 
role in the development of HFpEF which is disproportionately found in old
er individuals. Several key inflammatory pathways are involved in HFpEF, 
including chronic low-grade systemic inflammation, activation of the 
renin–angiotensin–aldosterone system, oxidative stress, and activation of 
the IS. These pathways can contribute to the development and progression 
of HFpEF and its associated comorbidities. Inflammageing may also induce 
changes in the vasculature of the heart.139 Specifically, by reducing availabil
ity of NO, an important vasodilator and regulator of protein kinase G 
activity causing hypertrophic changes and endothelial production of 
E-selectin. This results in an increase of lymphocytes recruitment which in 
turn release TFG-β1, encouraging fibrosis and thus ventricular stiffening, all 
of which can worsen diastolic function. Activation of the renin–angiotensin– 
aldosterone system can also contribute to fibrosis and hypertrophy of the 
heart, while oxidative stress can lead to metabolic heart disease. Recent evi
dence shows that PCSK9 has emerged as a new regulator of cardiometabolic 
ageing as their levels are increased in older people and is an independent pre
dictor of left ventricle diastolic dysfunction.140 On the other hand, cardiac age
ing increases cardiomyocyte senescence that affects normal function of heart 
resembling HFpEF manifestations.108 It has been suggested that HFpEF 
merely represents an acceleration of a normal ageing process. In fact, senile 
systemic amyloid deposition as part of the degenerative ageing process is 
emerging as an prominent and underdiagnosed contributor to HFpEF 
with age (Figure 2). Lately, activation of the IS by all these stressors and other 
events, such as previous infections, particularly with CMV and HIV can also 
contribute to the development progression and perpetuation of HFpEF and 
its associated comorbidities through inflammageing. In this context, due to 
the chronic or persistent antigen stimulation, T-cell responses are compro
mised during ageing at least partially owed to inmunosenescence and inflam
mation as hypothesized by Sansoni et al.141

Managing HFpEF typically involves addressing underlying conditions, life
style modifications, and medications to alleviate symptoms and improve 
the overall function of the heart.142,143 Efficacy of common HF therapeu
tics has turned unsatisfactory in HFpEF so far. Specific therapeutic strat
egies for HFpEF treatment include drug repurposing, targeting 
metabolic-induced inflammation, and ongoing clinical trials testing various 
pharmacological therapies with immunomodulatory actions for CVD and 
diverse HF. Regarding available targeted metabolic dysfunction interven
tions, which are the most, some of them have beneficial effects in inflam
matory status of HFpEF. Clinical trials testing other targets and 
device-based approaches in HFpEF are also being explored. Among 
them, direct targeting of inflammageing offers a new therapeutic opportun
ity for HFpEF patients.

6.7 Targeting low chronic inflammation for 
HFpEF treatment
Different inflammatory pathways converge in the onset of inflammageing 
as discussed above; therefore, attenuation of inflammatory burden during 
ageing may attenuate the severity of symptoms observed in HFpEF pa
tients, which in turn can enhance the quality of life and life expectancy. 
Immunomodulatory therapies, such as monoclonal antibodies targeting 
proinflammatory cytokines, are the most used. The activation of NLRP3 
inflammasome signalling in HFpEF remains circumstantial and requires fur
ther investigations. In contrast to other CVD events, such as atheroscler
osis, canakinumab has not been tested in HFpEF patients yet.102 However, 
several trials aiming to inhibit cardiac proinflammatory pathways in HFpEF, 
by blockade of IL-1R with anakinra, a recombinant IL-1 receptor antagon
ist, resulted in reduced systemic inflammatory status and decreased CRP 
levels.100,101 Because of elevated levels of systemic IL-6 and TNF-α in 
HFpEF patients, targeting these specific inflammatory pathways with 
anti-IL-6 therapy (TCZ) and anti-TNF-α, respectively, represents the 
best examples of immunomodulatory strategies144 (Table 2). These cyto
kines, together with CRP, have also proved useful as robust biomarkers 
to identify patients who may benefit from anti-inflammatory treatments. 
The potential benefits of TNF-α antagonism in rescuing the effects of age
ing on stroke are shown in a study that offers exciting perspectives for tar
geting inflammageing and improving stroke outcomes and other HF 
diseases.145 In another study, treatment with a DC-SIGN ligand (DCSL1, 
dendritic cell-specific intercellular adhesion molecule-3-grabbing non- 
integrin ligand 1) reduced macrophage polarization and diastolic dysfunc
tion during ageing, but in a gender-specific manner.146 The reduction in 
proinflammatory macrophage polarization was accompanied by a decrease 
in fibrosis, suggesting that the anti-inflammatory effects of DCSL1 may 
have contributed to the improvement in diastolic function in female 
mice. On the other hand, colchicine has been shown to have anti- 
inflammatory properties in a high salt diet rat model of HFpEF, attenuating 
cardiac dysfunction and fibrosis and modulating the inflammasome NLRP3 
and NF-κB pathways.147 Several clinical trials have been conducted on col
chicine in reducing cardiovascular events in diverse heart disease and CVD, 
including atherosclerosis; however, despite the promising results of colchi
cine in animal models, its use in humans should be carefully considered be
cause of certain side effects. Even so, low doses in humans are only 
recommended to high CVD-risk patients.105,106

Since there is a strong correlation between HFpEF and metabolic syn
drome, T2D, and obesity, available therapeutic strategies for these diseases 
are now being evaluated to prevent or manage diverse pathological aspects 
of heart disease and specifically HFpEF. Some of these metabolic interven
tions using inhibitors with indirect beneficial effects on the inflammatory 
status of HFpEF, include trials testing sodium-glucose cotransporter 2 inhi
bitors (SGLT2 inhibitors), a monoamine oxidase inhibitor,148 a xanthine 
oxidase inhibitor,149 and an inhibitor of the uric acid transporter 
URAT1.150 While the empagliflozin SGLT2 inhibitor has turned out to 
be beneficial and showed significant changes in cognitive impairments 
and frailty,151 it has not been tested yet for inflammageing in HFpEF dis
ease.94 However, another SGLT2 inhibitor, dapagliflozin, also used in the 
treatment of T2D, resulted in improvement of HFpEF as indicated by 
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reduced hospitalizations and cardiovascular death152 (Table 2). In this line, a 
recent study provides new clues about the metabolic stress-dependent ac
tivation of cardiac macrophages in a model of dyslipidaemia-induced dia
stolic dysfunction, putting the IS back in the spotlight as a target for 
treatment HFpEF. In this study, the authors suggest the use of SLTG2 in
hibitors as potential agents in the therapy of this specific phenotype of 
HFpEF. Other pharmacological treatments mainly used for non-alcoholic 
fatty liver disease, including statins, thiazolidinediones, GLP-1R agonists, 
and metformin, have shown beneficial effects on HFpEF progression but 
whether this mechanism involves reduction of inflammageing has not 
been addressed yet. Recently, semaglutide has gained increasing interest 
in targeting diabetes and other metabolic dysfunction. This GLP-1R agonist 
is approved in obese HFpEF patients’ treatment and may reduce inflamma
tion at the systemic level by measuring CRP levels as shown in the 
STEP-HFpEF trial.112,153

The use of angiotensin receptor neprilysin inhibitors may exert its thera
peutic effects in HFpEF by targeting multiple pathological mechanisms in
volved in the pathogenesis and progression of the condition, including 
inflammation, hypertrophy, and fibrosis. One of them, sacubitril/valsartan 
reduces myocardial inflammation154 while LCZ696 inhibitor used in other 
trial (PARAGON) for HFpEF patients,110 did not show any significant im
provement at the inflammation level, except in some specific cases of 
HFpEF. The use of different angiotensin inhibitor therapeutic agents has re
vealed heterogeneity in the symptoms of this disease. Therefore, more evi
dence is needed to clarify the exact mechanism by which some individual 
respond better than others.

Other evidence suggests that stimulators of the NO-sensitive soluble gua
nylyl cyclase could be a potential therapeutic option for humans with HFpEF. 
A study shows that using the NO-independent stimulator BAY 41-8543 in a 
double-transgenic rat model of HFpEF can drastically improve survival rates, 
reduce cardiac fibrosis and inflammation, and improve cardiac function and 
hemodynamics.155 Thus, future studies are necessary to determine the inter
play between senescence mechanisms and metabolic-induced inflammation 
for the HFpEF pathogenesis.

Finally, another interesting strategy is based on targeting the mitochondria- 
inflammation circuit to mitigate HFpEF. By increasing circulating 
β-hydroxybutyrate abundance, it ameliorates HFpEF phenotypes by abrogat
ing the vicious circuit of mitochondrial damage and inflammation. The study 
investigates metabolic mechanisms and tests therapeutic interventions of 
HFpEF by revealing new mechanisms between mitochondrial dysfunction 
and activation of NLRP3 inflammasome as a key driver in the pathogenesis 
of HFpEF.156

6.8 Nutritional and lifestyle-based 
interventions with reduced inflammageing
There is ample evidence that western lifestyle in the developed world in 
combination with environmental triggers increases cardiovascular risk of 
the world’s population as it age. A sedentary lifestyle, hypercaloric diets 
or stress may accelerate or worsen the symptoms of CVD.157 For ex
ample, recent evidence showed association of non-regular sleep and sub
clinical markers of CVD, with special impact on atherosclerosis.158 There is 
a variety of lifestyle modifications based on reduced dietary intake, and 
their pharmacological mimics, that delay the onset of age-related diseases 
and expand life expectancy. Nutrient sensors, such as mTOR and its down
stream mediator Syntaxin 13 (Syx13), are linked to lysosome morphology 
and regulate inflammageing as shown in a recent study.159 Of note, rapamy
cin treatment reduced inflammageing and immunosenescence. Therefore, 
distinct interventions other than the use of medications are being devel
oped to mitigate inflammageing and therefore the onset and progression 
of its associated diseases. The role of nutrition is a key on inflammageing 
status as described by many authors and it is clear that specific modifica
tions in dietary patterns that affects inflammageing have become in a 
powerful strategy for healthy ageing.160,161 Additionally, natural non-drug 
intervention based on regular exercise are now being explored in several 
trials to test whether inflammatory markers are reduced. As shown in 
this recent work,162 in addition to positive impact delaying the onset of 

age-related diseases, exercise has been shown to enhance proteostasis, 
stress response, and epigenetic stability, while reducing inflammation and 
metabolic dysregulation. Previous studies have demonstrated higher levels 
of proinflammatory eicosanoids in HF, including prostaglandins PGI2 and 
PGE2, suggesting their involvement in the inflammatory processes under
lying HFpEF.163 Some of these lipids act as ideal biomarkers of HFpEF status 
and exercise manifestations in the disease. Therefore, targeting these bio
active lipid mediators could be a therapeutic strategy to modulate inflam
mation in the physiopathology of HFpEF.164

Malandish and Gulati investigated the effects of exercise interventions 
on serum or plasma levels of specific inflammageing markers (TNF-α, 
IL-6, IL-1β, IL-8, and high-sensitivity CRP, hs-CRP) in overweight and obese 
patients with HFpEF. The study revealed significant differences in the ef
fects of aerobic, resistance, and concurrent exercises on inflammageing 
markers in overweight/obesity patients with HF, specifically improving in
flammageing markers such as TNF-α, IL-6, and hs-CRP. In addition, the ana
lysis of subgroups by age, body mass index (BMI), type, intensity, duration 
of exercise, and mean left ventricular ejection fraction revealed specific re
ductions in TNF-α, IL-6, and hs-CRP for different exercise modalities and 
patient’s characteristics. Furthermore, the meta-analysis highlighted that 
aerobic and concurrent interventions with moderate and high exercise in
tensities, as well as short, long, and very long-term follow-ups, may down- 
regulate the inflammageing process in HF patients. These findings suggest 
that the type and intensity of exercise interventions, as well as the duration 
of follow-up, play a significant role in modifying inflammageing markers in 
overweight/obesity patients with HF.165 These findings have several poten
tial implications for the development of exercise interventions for patients 
with HF and related conditions including tailored exercise prescription and 
the anti-inflammageing effect of the exercise prescription, which may have 
clinical benefits for patients with HF. The findings call for further research 
to explore how exercise interventions, ageing, and BMI modify the inflam
mageing process in individuals with HF. Overall, the data described in this 
review provide new approaches on how to treat CVD and present strat
egies to prevent atherosclerosis and HF, both based in modifying inflamma
geing markers and improving clinical outcomes for patients with HF and 
obesity. Lastly, all these analyses can help to improve or even delay the age
ing process.
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